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ABSTRACT

The domain wall between coexisting chirally symmetric and broken-symmetry

regions is studied in a saddle±point approximation to the effective three-flavour er-

model. In the chiral limit the surface tension varies in the range [(40- -50)MeV] 3.

The width of the domain wall is estimated to be __ 4.5 f.m.
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1. Recently, considerable effort has been invested into the determination of the

surface tension between the low- and the hlgh-temperature phases of quantum

chromodynamics at the coexistence point [1,2]. These investigations have made

use of the quenched lattice version of QCD. Already at modest temperature-

extension of the lattice (Nt = 4) considerable di_culties were met in extracting a

reliable signal for the presence of the interface. In the full theory, the simulation

of the phase transition with 4 light flavours is weU under control [3]. In the

phenomenologically more interesting N! = 2, 3 cases the order of the transition is

not settled yet [4,5].

On the basis of these remarks the renewal of interest in the effective low

energy theories of QCD seems to be justified in the present context too. Since

some exploratory investigations indicate that near the phase transition the high

temperature phase of QCD might also be described in terms of colourless, massive

excitations [6], there is a chance that the phase transition itself can be understood

fully in this framework.

In this Letter we present a semiquantitative analysis of the interface between

coexisting chirally symmetric and broken symmetry regions in a three-flavour

linear o'-model.

The most successful effective meson model is based on the non-linear realisa-

tion of the broken-symmetry vacuum [7,8]. In particular, based on the observation

that the finite-temperature partition function of QCD is determined at low T by

the Goldstone sector, an expansion has been derived for the quark condensate,

(_b) to O(T _) [9]. A smooth extrapolation of its decreasing tendency towards

higher T indicates that the restoration of chiral symmetry would take place at

._ 170 MeV for N! = 2. In view of the possible first-order nature of the transition

this is rather an upper bound on ff'c. As such, it is in agreement with the results of

MC-simulations of the full QCD with two [10] and four [3] light flavours (in the lat-

ter case the proportionality of Tc to Ni I/2 is to be taken into account). However,

a fully conventional approach to the chiral phase transition within the non-lineaz

model is prevented by the absence of an explicit order parameter field in this the-

ory. Actually, this field is traded for the coupling F_, whose temperature--variation

has been also studied in the literature [9_11].

An interesting variant of this low-energy description incorporates also a glue-

ball field, fulfilling the trace anomaly already at the tree level [12,13,14]. The

resulting idea of a unique mechanism for the finite temperature variation of the



chiral and gluon condensates has been investigated recently in Ref.[15].

It is in the linear g-model where the scalar singlet order parameter field

appears explicitly. Although the emstence of the scalar nonet is a notoriously

disputed subject, recent analyses claim, that by taking into account the existence

of K-l_" molecules, a nonet with the appropriate features can be proposed uniquely

[16]. The linear model at the tree level represents equally well the low-energy

meson sector as the non-linear version [17,18,19]. However, it has been explicitly

shown that renorma_satlon is not the correct way to improve its predictions [20].

Therefore, it is a reasonable strategy [21] to estimate the modification of the tree-

level potential at finite temperature by taking into account exclusively the thermal

fluctuations.

This "classical" interpretation of the effective model has been implemented in

Ref.[21] by simply omitting the T-independent (divergent) part of the one-loop

finite temperature quantum correction of the effective potential. This certainly

cannot be considered a consistent approach. Instead, we emphasize that the cr-

model provides a classical field-theoretical model for the ground state of QCD,

which can be investigated at finite temperature in the framework of classical sta-

tistical physics. We remark that recently the role played in the deconfinement

by skyrmions has been investigated in the SU(2) x SU(2) non-linear model with

the same philosophy [22]. Before proceeding to the construction of the chiral

order parameter profile, we shall calculate the constrained tree energy [23,24] of

the tree-level parametHzed linear o'-model as for a classical field theory at finite

temperature. A first-order transition will be detected for N! = 3 in agreement

with the results of the general renorma].isation group analyses [25,26]. Once the

functional form of the free energy constrained by the constant non-zero value

of the or-field is calculated at Tc numerically, the construction and the analysis

of the chiral order parameter profile goes along the same lines as earlier for the

Polyakov-loop profile [27].

The present approach is in full analogy with the treatment of magnetism with

the help of classical spin-models (Ising, Heisenberg etc.), where the quantal nature

of the magnetic phenomena is reflected only in the actual value of the nearest

neighbour, etc. couplings calculated at zero temperature. The applicability of

such models to real magnetic crystals depends on the success or failure of their

predictions. The same statement applies to the content of the present note.
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2. The Hamiltonian of the linear it-model is given by

1 / II2 7/v [._I],7_[M] = _ d3z tr +

?iv[M] = / d3z [ltr (VM)(VM')- #°22tr MM t + g( detM + detM Jr)

+fl( tr MMt) 2 + f2 tr (MMt)2], (1)

where the complex matrix M represents the scalar (o') and the pseudoscalar (¢)

nonets:
8

1

= + tr = (21
/=0

The matrix II is formed from the conjugate momenta of M. In our concrete

calculations we shall make use of the parametrisation proposed by Goldberg [21],

which leads to an SU(3)-symmetric spontanous breaking of the SU(3) x SU(3)

chiral symmetry:

/_0 = 244MeV, g = -1811MeV, fl = 1.70, f2 = 11.91. (3)

For the construction of the chiral profile the constrained free energy, corre-

sponding to a non-zero fixed value of _0(k = 0), the k = 0 Fourier component of

_r0(z), is the appropriate quantity to evaluate. After integrating over the conjugate

momenta the partition function of the classical medium defined by Eq. (1) and

Eq. (3) is given by

Z[ao] -= exp{-_V//(tro)}

8 8

=/VM_(_0(k = 0)--tr0) H6(Ot(k = 0)) H6(¢l(k = 0))exp{-_37-lp}, (4)
i=1 1=0

where fl = T -1.

The integration over M in a finite volume V is done by separating the k = 0

mode explicitly:

1

MCz) = _,,'o X + mCz), e, Ck = 0) = 0. C5)

Reshuffling Eq. (1) accordingly, one proceeds to an approximate evaluation of the

m-integral, which would be exact in an infinite component model (actually, here
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one has 18 components). First, an auxiliary 3 x 3 matrix field Z(z) is introduced,

which formally transforms the quartic piece in the exponent of Eq. (4) into one

which is quadratic in rn. Next, one assumes that the E-integration is dominated

by an SU(3)-symmetric saddle-point:

_(_) = _ ;. (6)

Third, one performs the m-integration in the Gaussian approximation, which

yields the leading low-temperature correction to the zero-temperature free en-

ergy. (The perturbation theory with respect to the cubic piece of 7-/p corresponds

to a loop expansion, where the role of h is played by/3 -1 = T.)

The detailed presentation of the above procedure can now be found in text-

books [28], therefore we directly give the infinite-volume result for the one-loop

correction of the constrained free energy, evaluated at the saddle point:

d_k 1_,xu.._,,. = r (2.)_ 2 _g(O)_n(k' + X(O)).
Q

(7)

In this equation the index Q runs over the scalar singlet (S0), the scalar octet (S8),

the pseudoscalar singlet (P0), and the pseudoscalar octet (P8) meson-multiplets,

g(Q) gives the corresponding multiplicities, X(Q) = _ +/.t] + #2(Q) acts as a kind

of effective squared mass, while /z2(Q) at o'0 = o',,,i,,(T = 0) yields the meson

masses in the chiral limit:

4g

/z2(SO) = -bt02 + -_O'o + 4o'02(3fl + f2),

2g

/z_(S8) =-/z0 _ - _o'0 + 4o'_(11 + f2),

4g 4o._(3f ' +

v_(Ps) = -#_ + _,,o +

g(so) = 1,

g(s8) = 8,

g(PO) = 1,

g(PS) = 8.

(s)

One has to emphasize that the original integrand of Eq. (4) is exponentially small

for large field values, therefore the saddle-point approximation loses its sense when

any single X(Q) becomes negative. In the symmetric phase the particle masses

are defined at _r0 = 0, where ._ has the meaning of the common mass square of

the parity partners. At zero temperature _ = -/.t] (see below), which implies by



Eq. (3) o,_n = 115 MeV leading to a SU(3)-symmetric spectrum (P8: 0, P0:850

MeV, $8:950 MeV, SO: 600 MeV). Thus, the saddle-point approach holds the

promise for a unified descriptionof both phases.

The saddle-point value of the freeenergy isfound by minimising itsexpression

as a function of ] for fixed e0:

= o. (9)

The formal procedure outlined above is given sense by applying a cut-off A

on the k-integral in Eq. (7). This is physically natural, since the effective theory

ceases to represent QCD, even approximately, when high-energy fluctuations start

to play an important role. For the numerical calculations it is convenient to use

scaled (dimensionless) quantities:

T

r=X,
9 _t0

= -X-'

e0
e _ m

A'

X

A 2

The cut-off integral of Eq. (7) was calculated analytically:

(lO)

1-2 2 2 3 13 +(fl+U.,.dd_,[s, e, h] = A4 8(311+ _2j -

+ 12,r---i-}--'g(0)[ln(1 + 2:(0)) + 22(0) - 22:(0) ,/' 8xctan X-_/'(0)] .
Q

(11)

The explicit expression of Eq. (9) can be obtMned by taking the partial derivative

of Eq. (11) with respect to s.

Eq. (9) has been solved for several values of A in the range A E (250, 2000)MeV.

For each A, r was varied and s(A, _', e) found. In the range A G (500, _ 1000) MeV

for some e-values no saddle-point fulfxl]Jng the X > 0 condition could be found.

In these points the proposed approximation scheme fails. Based on the To-range

of lattice-calculations discussed in the introduction, our strategy was to choose

values of A tuning the critical temperature over the interval Tc E (100,200) MeV.

It turns out that the interesting interval in this sense is A < 400 MeV, where the

saddle-point approximation works well.

Evaluating Eq. (11) at the saddle point, at very low 7" its double-well nature

inherited from the classical potential is preserved. When increasing _', the position



of the non-trivial minimum shifts considerably towards the symmetric minimum

at the origin. The degeneracy of the corresponding potential values occurs before

their locations coincide. In the whole parameter region, where the saddle-point

approximation makes sense, a clean first-order transition was observed. It is worth

mentioning that on both sides of the transition temperature we found physical

values for the saddle point (X > 0), which can be contrasted with the case of

continous phase transitions, discussed in [28], where the critical point is identified

from the symmetric phase as the end of the validity of the saddle-point dominance.

In Fig. 1 we illustrate the typical evolution of the potential with the tem-

perature for A = 300MeV. Other values of the cut-off lead only to quantitative

changes. In Fig. 2 the smooth variation of Tc with A is displayed. Although

Tc < A in the whole range, the relevant A values are lower than what is intuitively

expected. We remark that T¢ < 10MeV for A > 1GeV.

3. When the critical temperature is fixed by choosing A, no free parameter remains

in the theory. The complete characterisation of the chiral interface will be given

in physical units. The kink equation

d2______0= d u(_0) (12)
dz 2 do'o

is discretised using a lattice constant (a) proportional to A -1

1

z = la, a - hA' n = 1,2,... (13)

The discretised equation for the dimensionless quantities was solved in the form

_(l + 1) = 2_(0 - _(l - 1)+
1 d _'_saddle

r_2A4 d_r (14)

The kink solution of the A = 300 MeV case suggests very slight n-dependence,

even for n = 1, 2 (Fig. 3). In addition, we have calculated the surface tension,

t,-z= _[ ,',(,,(0-,,-(l- 1))2+ _ .o,.,,.(,,)] (15)
l

which also shows very slight n-dependence. In Table I we give the surface tension

(a), the width of the interface (d) and the value of the non-trivial trml, at T¢ for

a few Te-values from the relevant range. The most important observation is that



none of them seem to be particularly sensitive to To. The results summarized in

the Abstract are rather robust.

The range of a found by us is almost one order of magnitude smaller than the

bag-model estimate of Ref.[29]. Although Campbell et al. have given some support

to that result in their effective model calculation, our thickness estimate sheds

some doubt on the validity of the thin-wall approximation used in [15]. This wall-

thickness of 4-5 f.m is a somewhat intriguing result of the present study. It would

mean that in heavy ion collisions, in a large part of the fireball only a decrease

of the quark-condensate could be ac_eved_ as the tail of the surrounding low-

temperature vacuum enters fairly deep into the high energy-density region. Such

a situation might motivate the study of particle emission from states intermediate

between the fully broken and the symmetric phases at To.

Our additional numerical investigation showed that if the mass of the scalar

singlet is increased by up to 950 MeV (the other parameters are kept fixed) no

quantitative change occurs in the characteristics of the interface. However, if the

mass of the whole scalar sector is larger (of the order of 1.5 GeV) the surface

tension would grow to the value conjectured in Refs. [32]_ and its width would

decrease to 2 fro.

4. In this investigation we have attempted a semi-quantitative characterisation

of the chiral interface at the QCD phase transition point. The linear o'-model

was just a choice, where the temperature dependent corrections to the free energy

density of the tr-field could be estimated. The model certainly has to be extended

to take into account further light degrees of freedom with significant coupling to o'.

A first step in this direction could be a modal incorporating an additional glueball-

field [i4]. We note, that with careful discretisation, which takes into account the

essential role played by the cut-off, one can use non-perturbative lattice methods

for the study of the thermodynamics of low-energy effective theories as well.
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Table 1

The transition temperature and the characteristicdata of the chiralorder

parameter profilein the chirallimit of the linear a-model as a function of the

cut-off.

Figure

Figure 1:

Figure 2:

Figure 3:

A [MeV]

230

240

250

260

270

280

290

300

310

320

T,.[MeV]

225.77

199.14

176.66

157.55

141.20

127.14

114.97

104.38

95.13

87.01

al/3[MeV]

38.9

39.7

40.6

41.3

42.2

43.1

43.9

44.6

45.4

46.1

d [fro]
4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.4

4.4

4.4

amin [MeV]

48.5

50.2

51.8

53.0

54.3

55.7

56.8

57.9

58.9

59.6

captions

The variationof 103 × the scaled constrained freeenergy density vs. the

scaled a-field with the temperature. The curves, starting from below,

correspond to T = 100 MeV, 102 MeV, To, 106 MeV and 108 MeV,

respectively.

The dependence of the critical temperature on the cut-off of the thermal

fluctuations. Both Tc and A are measured in MeV.

The chiral order parameter profile displayed on a lattice with lattice con-

stant a=l/3A. The different curves correspond to appropriately scaled-

up kinks evaluated originally on lattices with a=l/A (solid), a=l/2A

(dashed) and a=l/3A (dotted), respectively. The value of the a-field is

measured in MeV.
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